

Approaches to Making Dynamic Data Citeable Recommendations of the RDA Working Group

Andreas Rauber

Vienna University of Technology rauber@ifs.tuwien.ac.at
http://www.ifs.tuwien.ac.at/~andi

Outline

- Joint Declaration of Data Citation Principles
- Challenges in non-trivial settings
- Recommendation of the RDA Working Group
- Pilots
- Summary

- 8 Principles created by the Data Citation Synthesis Group
- https://www.force11.org/datacitation
- The Data Citation Principles cover purpose, function and attributes of citations
- Goal: Encourage communities to develop practices and tools that embody uniform data citation principles

1) Importance

Data should be considered legitimate, citable products of research. Data citations should be accorded the <u>same importance as publications</u>.

2) Credit and Attribution

Data citations should facilitate giving credit <u>and</u> <u>normative and legal attribution</u> to all contributors to the data.

3) Evidence

Whenever and wherever a <u>claim relies upon data</u>, the corresponding data should be cited.

4) Unique Identification

A data citation should include a <u>persistent method</u> for identification that is <u>machine actionable</u>, globally unique, and widely used by a community.

5) Access

Data citations should facilitate access to the data themselves and to such associated metadata, documentation, code, and other materials, as are necessary for both <a href="https://www.necessary.com/humans.com

6) Persistence

Unique identifiers, and metadata describing the data, and its disposition, should persist - even <u>beyond the lifespan</u> of the data they describe.

7) Specificity and Verifiability

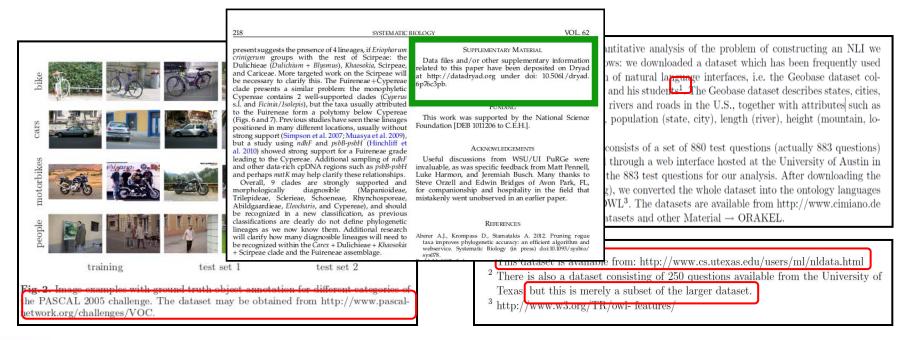
Data citations should facilitate identification of, access to, and verfication of the specific data that support a claim. Citations or citation metadata should include information about provenance and fixity sufficient to facilitate verfiying that the specific timeslice, version and/or granular portion of data retrieved subsequently is the same as was originally cited.

8) Interoperability and flexibility

Data citation methods should be sufficiently flexible to accommodate the <u>variant practices among</u> <u>communities</u>, but should not differ so much that they compromise interoperability of data citation practices across communities.

Outline

- Joint Declaration of Data Citation Principles
- Challenges in non-trivial settings
- Recommendation of the RDA Working Group
- Pilots
- Summary



Data Citation

- Citing data may seem easy
 - from providing a URL in a footnote
 - via providing a reference in the bibliography section
 - to assigning a PID (DOI, ARK, ...) to dataset in a repository
- What's the problem?

Citation of Dynamic Data

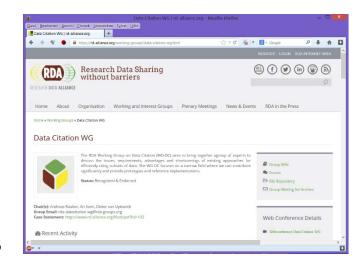
- Citable datasets have to be static
 - Fixed set of data, no changes:
 no corrections to errors, no new data being added
- But: (research) data is dynamic
 - Adding new data, correcting errors, enhancing data quality, ...
 - Changes sometimes highly dynamic, at irregular intervals
- Current approaches
 - Identifying entire data stream, without any versioning
 - Using "accessed at" date
 - "Artificial" versioning by identifying batches of data (e.g. annual), aggregating changes into releases (time-delayed!)
- Would like to cite precisely the data as it existed at certain point in time, without delaying release of new data

Granularity of Data Citation

- What about the granularity of data to be cited?
 - Databases collect enormous amounts of data over time
 - Researchers use specific subsets of data
 - Need to identify precisely the subset used
- Current approaches
 - Storing a copy of subset as used in study -> scalability
 - Citing entire dataset, providing textual description of subset
 -> imprecise (ambiguity)
 - Storing list of record identifiers in subset -> scalability,
 not for arbitrary subsets (e.g. when not entire record selected)
- Would like to be able to cite precisely the subset of (dynamic) data used in a study

Data Citation – Requirements

- Dynamic data
 - corrections, additions, ...
- Arbitrary subsets of data (granularity)
 - rows/columns, time sequences, ...
 - from single number to the entire set
- Stable across technology changes
 - e.g. migration to new database
- Machine-actionable
 - not just machine-readable, definitely not just human-readable and interpretable
- Scalable to very large / highly dynamic datasets
 - but should also work for small and/or static datasets



RDA WG Data Citation

- Research Data Alliance
- WG on Data Citation:
 Making Dynamic Data Citeable
- WG officially endorsed in March 2014
 - Concentrating on the problems of large, dynamic (changing) datasets
 - Focus!
 Not: PID systems, metadata, citation string, attribution, ...
 - Liaise with other WGs and initiatives on data citation (CODATA, DataCite, Force11, ...)

https://rd-alliance.org/working-groups/data-citation-wg.html

Outline

- Joint Declaration of Data Citation Principles
- Challenges in non-trivial settings
- Recommendation of the RDA Working Group
- Pilots
- Summary

Making Dynamic Data Citeable

Data Citation: Data + Means-of-access

Data → time-stamped & versioned (aka history)

Researcher creates working-set via some interface:

- Access → assign PID to QUERY, enhanced with
 - Time-stamping for re-execution against versioned DB
 - Re-writing for normalization, unique-sort, mapping to history
 - Hashing result-set: verifying identity/correctness
 leading to landing page

S. Pröll, A. Rauber. **Scalable Data Citation in Dynamic Large Databases: Model and Reference Implementation.** In IEEE Intl. Conf. on Big Data 2013 (IEEE BigData2013), 2013 http://www.ifs.tuwien.ac.at/~andi/publications/pdf/pro_ieeebigdata13.pdf

Data Citation – Deployment

- Note: query string provides excellent provenance information on the data set! er gets
 - Data (pac This is an important advantage over page)
 - PID (e.g. traditional approaches relying on, e.g.
 - Hash value storing a list of identifiers/DB dump!!!
 - Recommended citatin text (e.g. bTeX)
- PID resolves to lang g page
 - Provides detailed metadata, link
 parent data set, subset,...
 - Option to retrieve original data OR current version OR changes
- Upon activating PID associated with a data citation
 - Query is re-executed against time-stamped and versioned DB
 - Results as above are returned

Data Citat

Note:

- 1 & 2 are already pretty much standard in many (RDBMS-) research databases
- Different ways to implement
- A bit more challenging for some data types (XML, LOD, ...)

System set-up to support dynamic data:

1. Ensure data is time-stamped

i.e. any additions, deletions are marked with a timestamp (optional, if data is dynamic)

2. Ensure data is versioned

i.e. updates not implemented as overwriting an earlier value, but as *marked-as-deleted* and *re-inserted* with new value, both time-stamped

(optional, if data is dynamic and access to previous versions is desired)

3. Create a query store for queries and metadata

Data Citation – Recommendations (Draft, 2/4)

When a specific subset of data needs to be persistently identified (i.e. not necessarily for all subsets!):

- 1. Re-write the query to a normalized form (optional)
- 2. Specifically: re-write the query to ensure unique sort of the result set (optional)
- 3. Compute a hash key of the normalized query to identify identical queries (optional)
- 4. Assign a time-stamp to the query Execution time or: last update to the entire database or: last update to the subset of data affected by the query
- 5. Compute a hash key of the result set (optional)
- 6. Assign PID to the query (if query/result set is new)
- 7. Store query and metadata in query store

Data Citation – Recommendations (Draft, 3/4)

Upon request of a specific subset:

- 1. PID resolves to landing page of the subset, provides metadata including link to the super-set (PID of the DB)
- 2. Landing page allows (transparently, in a machineactionable manner) to retrieve the subset by re-executing the query
- Query can be re-executed with the original time stamp or with the current timestamp, retrieving the semantically identical data set but incorporating all changes/corrections/updates applied since.
- Storing the query string provides comprehensive provenance information (description of criteria that the subset satisfies)

Data Citation – Recommendations (Draft, 4/4)

Upon modifications to the data management system:

- 1. When data is migrated to a new representation (new DBMS system, new schema), the queries need to be migrated
- 2. Hash keys for the query strings may need to be re-computed
- 3. Hash input function for result set may need to be adapted to ensure that the result sets are presented in the same form to the hash function
- 4. Successful re-writing should be verified by ensuring that queries can be re-executed resulting in the correct result set hash key

Initial Pilots

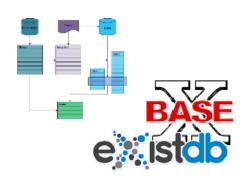
- Devised concept
- Identified challenges (unique sorting, hash-key computation, distribution, different data types, ...)
- Evaluated conceptually in different settings
 - How to apply versioning/time-stamping efficiently?
 - How to perform query re-writing?
 - How easy to adopt / changes required within RI?
- Started implementing pilots
 - SQL: LNEC, MSD
 - CSV: MSD, open source prototype
 - XML: xBase

Outline

- Joint Declaration of Data Citation Principles
- Challenges in non-trivial settings
- Recommendation of the RDA Working Group
- Pilots
- Summary

WG Pilots

- Pilot workshops and implementations by
 - Various EU projects (TIMBUS, SCAPE,...)
 - NERC (UK Natural Environment Research Council Data Centres)
 - ESIP (Earth Science Information Partners)
 - CLARIN (XML, Field Linguistics Transcriptions)
 - Virtual Atomic and Molecular Data Centre
- Prototype solutions for
 - SQL, CSV, XML (partially)
 - LOD/RDF, triple-store DBs in the queue
 - Distributed data



Dynamic Data Citation - Pilots

Dynamic Data Citation for SQL Data

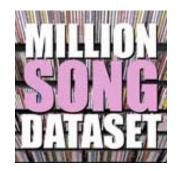
LNEC, MSD Implementation



SQL Prototype Implementation

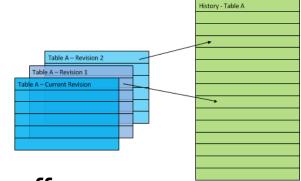
- LNEC Laboratory of Civil Engineering, Portugal
- Monitoring dams and bridges
- 31 manual sensor instruments
- 25 automatic sensor instruments
- Web portal
 - Select sensor data
 - Define timespans
- Report generation
 - Analysis processes
 - LaTeX
 - publish PDF report

Florian Fuchs [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia



SQL Prototype Implementation

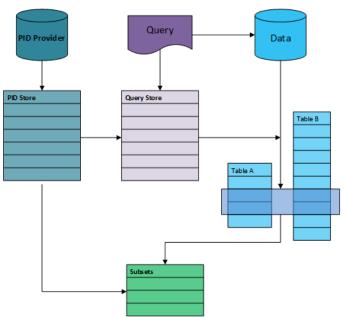
- Million Song Dataset
 http://labrosa.ee.columbia.edu/millionsong/
- Largest benchmark collection in Music Retrieval
- Original set provided by Echonest
- No audio, only several sets of features (16 – 1440 measurements/features per song)
- Harvested, additional features and metadata extracted and offered by several groups
 e.g. http://www.ifs.tuwien.ac.at/mir/msd/download.html
- Dynamics because of metadata errors, extraction errors
- Research groups select subsets by genre, audio length, audio quality,...



SQL Time-Stamping and Versioning

- Integrated
 - Extend original tables by temporal metadata
 - Expand primary key by record-version column
- Hybrid
 - Utilize history table for deleted record versions with metadata
 - Original table reflects latest version only
- Separated
 - Utilizes full history table
 - Also inserts reflected in history table

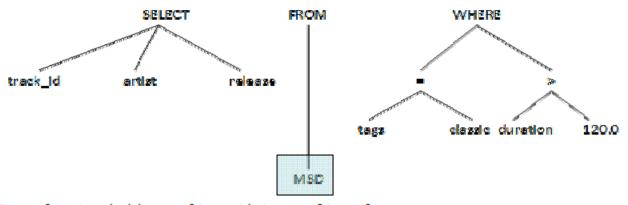
- Solution to be adopted depends on trade-off
 - Storage Demand
 - Query Complexity
 - Software adaption



SQL: Storing Queries

- Add query store containing
 - PID of the query
 - Original query
 - Re-written query + query string hash
 - Timestamp

 (as used in re-written query)
 - Hash-key of query result
 - Metadata useful for citation / landing page (creator, institution, rights, ...)
 - PID of parent dataset (or using fragment identifiers for query)



SQL Query Re-Writing

Adapt query to history table


```
SELECT results.track id, results.artist, results.release
        FROM MSD AS results JOIN
                SELECT track id, max(timestamp) AS latestTimestamp
                WHERE timestamp <= (SELECT @queryExecutionTimestamp)</pre>
                AND (track id NOT IN
                         (SELECT track id FROM MSD AS deletedRecords
                                WHERE deletedRecords.status mark = 'deleted'
                                AND (deletedRecords.timestamp < @queryExecutionTimestamp))</pre>
        GROUP BY track id
 AS version ON results.track id = version.track id AND results.timestamp = version.latestTimestamp
```

```
WHERE
    results.tags = 'classic' AND results.duration> 120
ORDER BY results.track id;
```

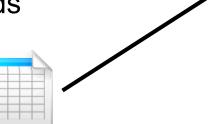

Dynamic Data Citation - Pilots

Dynamic Data Citation for CSV Data

Open Source Reference Implementation

Dynamic Data Citation for CSV Data

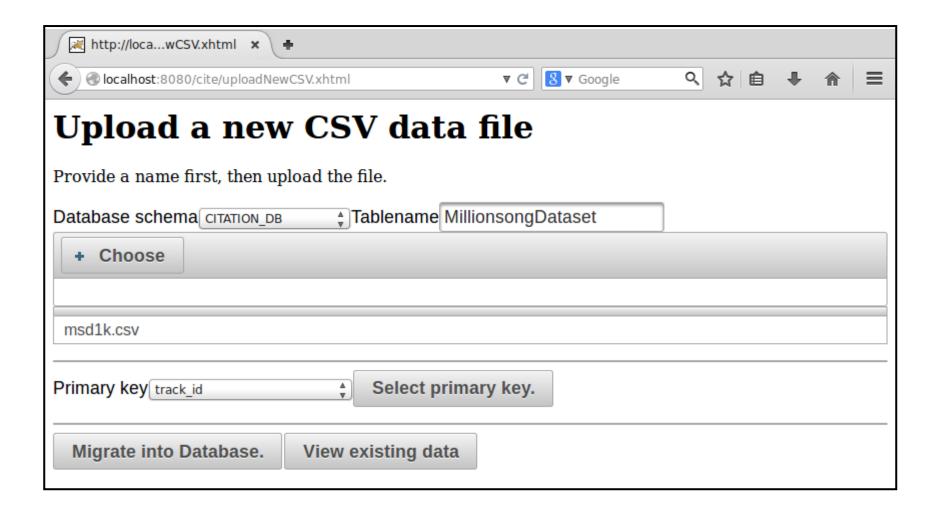
- Why CSV data? (not large, not very dynamic...)
 - Well understood and widely used
 - Simple and flexible
 - Most frequently requested during initial RDA meetings
- Goals:
 - Ensure cite-ability of CSV data
 - Enable subset citation
 - Support particularly small and large volume data
 - Support dynamically changing data
- 2 Options:
 - Versioning system (subversion/svn, git, ...)
 - Migration to RDBMS



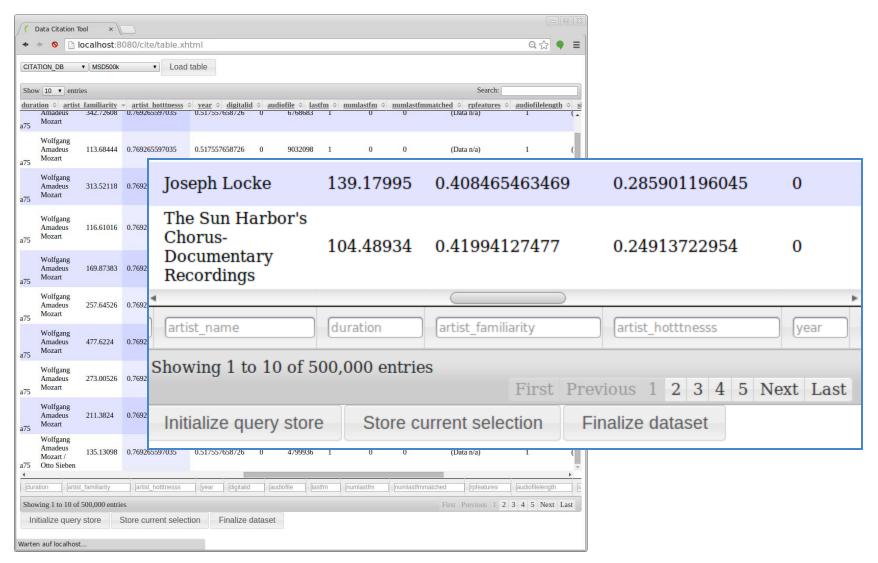
CSV Prototype: Basic Steps

- Upload interface
 - Upload CSV files
- Migrate CSV file into RDBMS
 - Generate table structure, identify primary key
 - Add metadata columns for versioning
 - Add indices
- Dynamic data
 - Update / delete existing records
 - Append new data
- Access interface
 - Track subset creation
 - Store queries

Data Citation Tool for CSV Data


This tool allows to upload, update and reference CSV subsets.

Upload CSV data



Suggested citation text:

Stefan Pröll (2015) "jj test" created at 2015-02-19 11:33:54.0, PID [ark:12345/5l86eH4qMX].

Subset of Stefan Pröll: "Adresses", PID [ark:12345/OjfL4gUmFo]

Download area

Download CSV Subset

↓ Download

Download the CSV data of this subset at the execution time of the query

Download Latest Subset

↓ Download

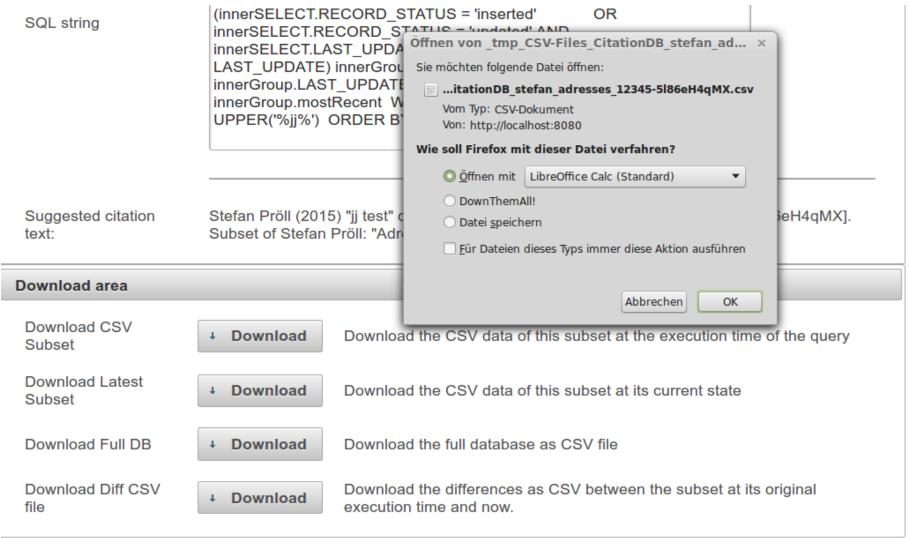
Download the CSV data of this subset at its current state

Download Full DB

↓ Download

Download the full database as CSV file

Download Diff CSV file


↓ Download

Download the differences as CSV between the subset at its original execution time and now.

Dynamic Data Citation - Pilots

Progress update from VAMDC Distributed Data Centre

Carlo Maria Zwölf
Virtual Atomic and Molecular Data Centre carlo-maria.zwolf@obspm.fr

VAMDC

- Virtual Atomic and Molecular Data Centre
- Worldwide e-infrastructure federating 41 heterogeneous and interoperable Atomic and Molecular databases
- Nodes decide independently about growing rate, ingest system, corrections to apply to already stored data
- Data-node may use different technology for storing data (SQL, No-sql, ASCII files),
- All implement VAMDC access/query protocols
- Return results in standardized XML format (XSAMS)
- Access directly node-by-node or via VAMDC portal, which relays the user request to each node

VAMDC

Workshop prior to RDA P4

Issues identified

- Each data node could modify/delete/add data without tracing
- No support for reproducibility of past data extraction

Proposed Data Citation WG Solution:

- Considering the distributed architecture of the federated VAMDC infrastructure, it seemed very complex to apply the "Query Store" strategy
 - Should we need a QS on each node?
 - Should we need an additional QS on the central portal?
 - Since the portal acts as a relay between the user and the existing nodes, how can we coordinate the generation of PID for queries in this distributed context?

VAMDC

Status / Progress since RDA P4

- Versioning adopted prior to P4
- Central service registering user interactions with data
- At each client SW notifies tracing service that a given user is using, at a given time, that specific software for submitting a given query
- Will assign single identifier for each unique query centrally
- Query store initially private (confidentiality issues)

Further Pilots

- NERC: UK Natural Environment Research Council
 - ARGO buoy network: SeaDataNet

- Butterfly monitoring, Ocean buoy network, National hydrological archive, ...
- ESIP: BCO-DMO

- XML Data in Field Linguistics (CLARIN, XBase)
- Further Pilots on XML, LOD, ...

- Workshops:
 - NERC Workshop, London, July 1/2 2014
 - ESIP Mtg in Washington, Jan 8 2015: Earth Science Data
 - Data Citation Workshop, Riva di Garda, April 20/21
 - Bilateral meetings with data centers

Join RDA and Working Group

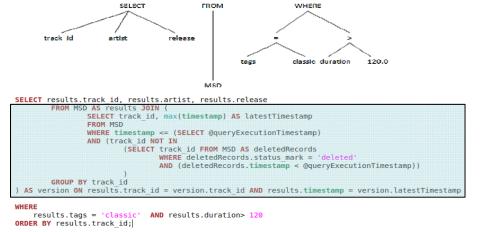
If you are interested in joining the discussion, contributing a pilot, wish to establish a data citation solution, ...

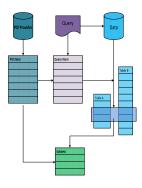
- Register for the RDA WG on Data Citation:
 - Website:

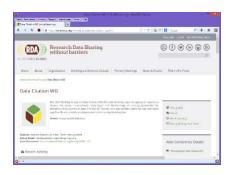
 https://rd-alliance.org/working-groups/data-citation-wg.html
 - Mailinglist:
 https://rd-alliance.org/node/141/archive-post-mailinglist
 - Web Conferences:
 https://rd-alliance.org/webconference-data-citation-wg.html
 - List of pilots:
 https://rd-alliance.org/groups/data-citation-wg/wiki/collaboration-environments.html

Summary

- Trustworthy and efficient e-Science based on data
- Data as "1st-class citizen"
- Support for identifying arbitrary subsets of dynamic data
 - Time-stamping and versioning of data
 - Storing (and citing) time-stamped queries
- Allows retrieving exact view on data set as used
- No need for artificial "versioning", delaying release of new data, or redundant storage of data subset dumps
- Helps tracing provenance (semantics) of data selection
- Future work: distributed datasets, data & query migration







Thank you!

http://www.ifs.tuwien.ac.at/imp

