

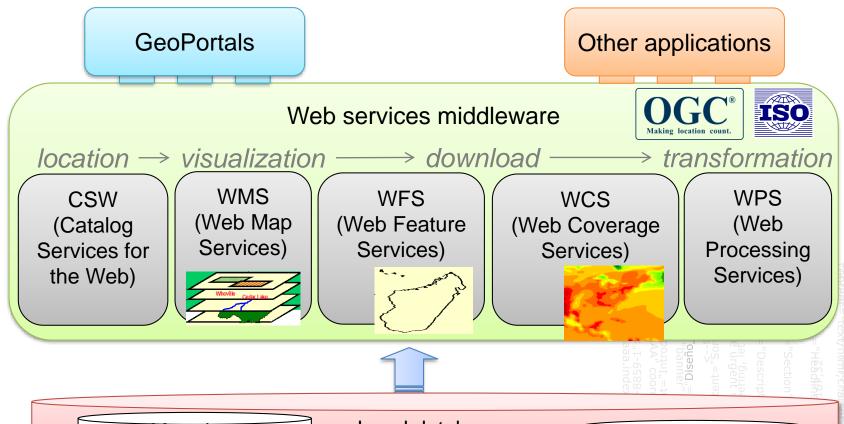
The role of Dublin Core in the publication of Open Geospatial Data

Javier Nogueras-Iso Advanced Information Systems Lab (IAAA) Aragon Institute of Engineering Research (I3A) Universidad de Zaragoza, Spain

October 14, 2021

Outline

- 1. Context: Spatial Data Infrastructures
- 2. Dublin Core as a solution for interoperability and findability
- 3. Dublin Core in the Open Geospatial Data era
- 4. The challenge of quality
- 5. Conclusions

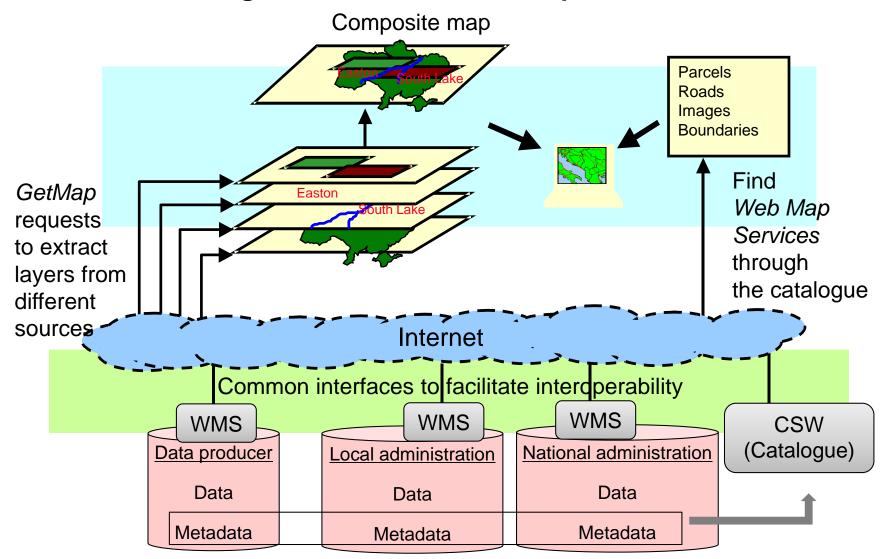


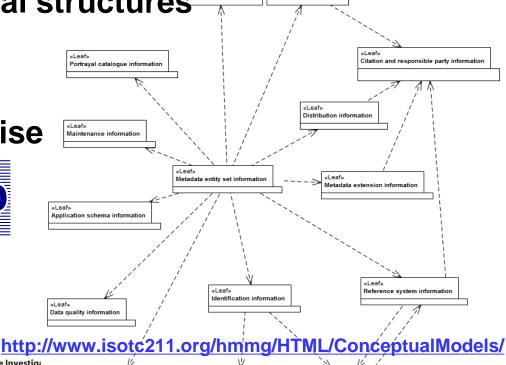
1. Context: Spatial Data Infrastructures

- Since middle nineties, there is a global acknowledgement of the potential of geographic information for decision-making and egovernance
- Spatial Data Infrastructures (SDI)
 - A coordinated approach to technologies, policies and institutional arrangements that facilitate the availability of and access to spatial data
- Governments consider SDIs as relevant as other basic infrastructures (transport, telecommunication, electricity, ...)
 - USA, 1994: Executive Order for the establishment of the NSDI
 - INSPIRE directive (Infrastructure for Spatial InfoRmation in Europe), launch in 2001, approved in 2007
 - Other national laws and regulations

SDI: 3-tier, service oriented architectures

Metadata ISO 19115, Dublin Core, RDF – Linked Data, GeoDCAT – Open Data Local databases


Data GML, KML, GeoPackage GeoTIFF, ...


Ability to combine data on real time from different sources

Metadata: the glue for the different components of an SDI

Problem: Complexity of geographic metadata standards

- Alternatives
 - FGDC: Content Standard for Digital Geospatial Metadata
 - ISO/TC 211: ISO 19115 "Geographic Information Metadata"
- More tan 400 elements, organized in hierarchical structures
- Need for specialized metadata edition tools
- Need for human expertise

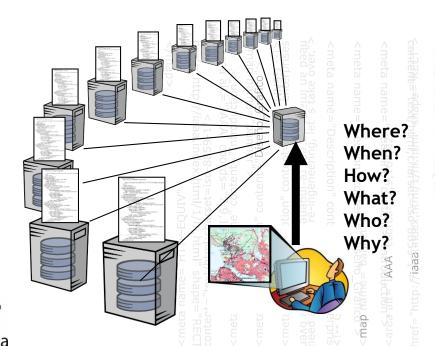
Instituto Universitario de Investiga en Ingeniería de Arag Universidad Zarag

«Leaf» Extent information

2. Dublin Core as a solution for interoperability and findability

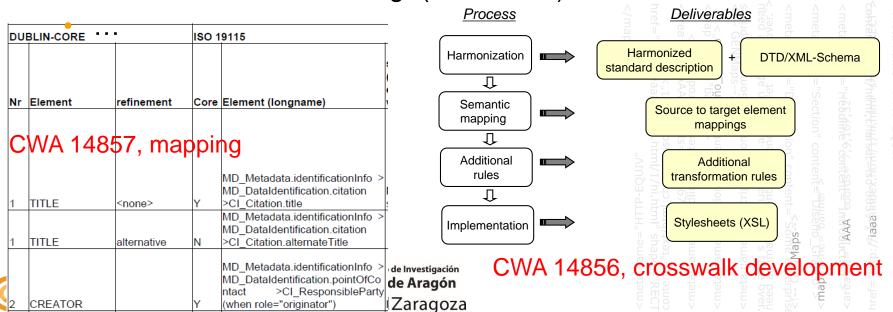
- Interoperability between different geographic information producers and geographic metadata standards
- Interoperability across different application domains

ame="HTTP-EQUIV"
sdeys "|waty";u/T,puty";udeys "lmaty";udeys.puty";udeys;"s"="laxty";charset=iso-8859-1">
"Lext/html;charset=iso-8859-1">
"Lext/html;charset=iso-8859-1">
ame="Headline" content="Introduction">

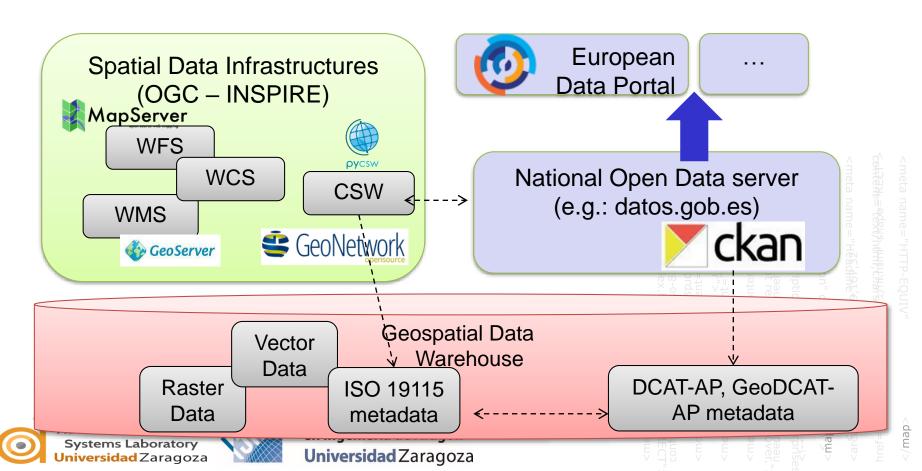


Interoperability between different geographic metadata standards

- The Catalog Services for the Web (CSW) protocol binding of the OGC Catalog Services specification is based on Dublin Core (2003-2007)
 - Dublin Core for queryable properties
 - Dublin Core for returnable properties in result records


Table 53 — Mapping of Dublin Core names to XML element names

Dublin Core element name	OGC queryable term	XML element name
title	Title	dc:title
creator		dc:creator
subject	Subject	dc:subject
description	Abstract	dct:abstract
publisher		dc:publisher
contributor		dc:contributor
date	Modified	dct:modified
type	Туре	dc:type
format	Format	dc:format
identifier	Identifier	dc:identifier
source	Source	dc:source
language		dc:language
relation	Association	dc:relation
coverage	BoundingBox	ows:BoundingBox
rights		dc:rights


Interoperability across different application domains

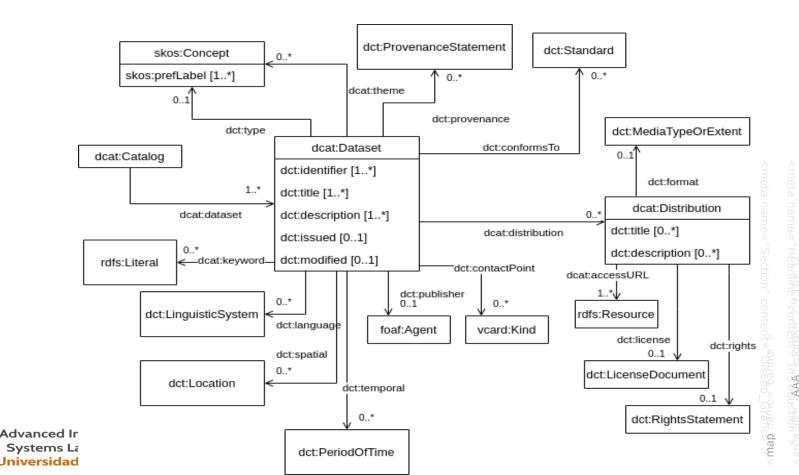
- CSDGM Dublin Core mapping
 - Developed by United States Geological Survey (2000)
- ISO 19115 Dublin Core mapping
 - European Territorial Management Information Infrastructure (ETeMII) European project (1999-2001)
 - CEN/ISSS Metadata for Multimedia Information Dublin Core Workshop project: "improving discovery of geographic information in cross-domain searching" (2002-2003)

3. Dublin Core in the Open Geospatial Data era

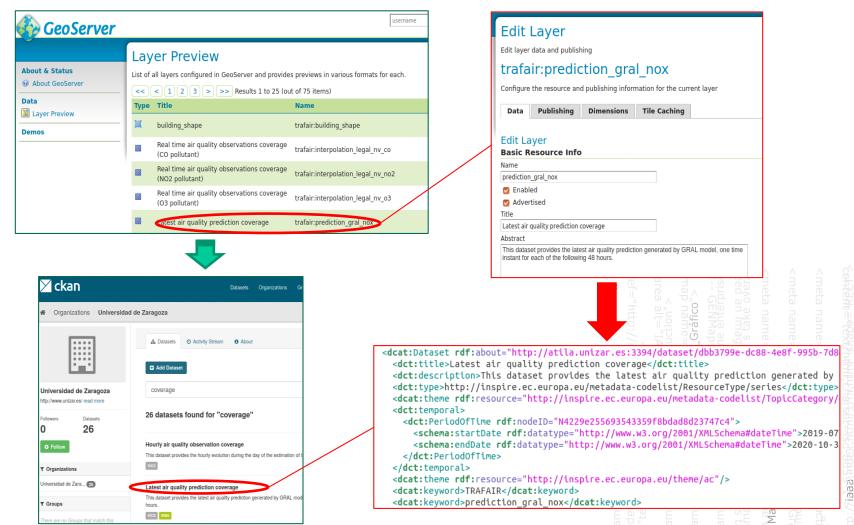
 With the launch of Open Data initiatives (2010 onwards), Open Data portals are a big competitor to SDI download services (geospatial data are open government data)

Metadata approaches directly based on Dublin Core

- DCAT: Data Catalogue vocabulary proposed by W3C for the description of Open Data (2012-)
 - Implemented in well-known software packages such as CKAN
- DCAT-AP: European Application Profile of DCAT for public sector datasets (2013-)
- GeoDCAT-AP: extension of DCAT-AP for geographic information (2015-)
 - Designed to assure compliance with European INSPIRE directive for establishing a spatial information infrastructure in Europe (and ISO 19115)


Example of application of GeoDCAT-AP

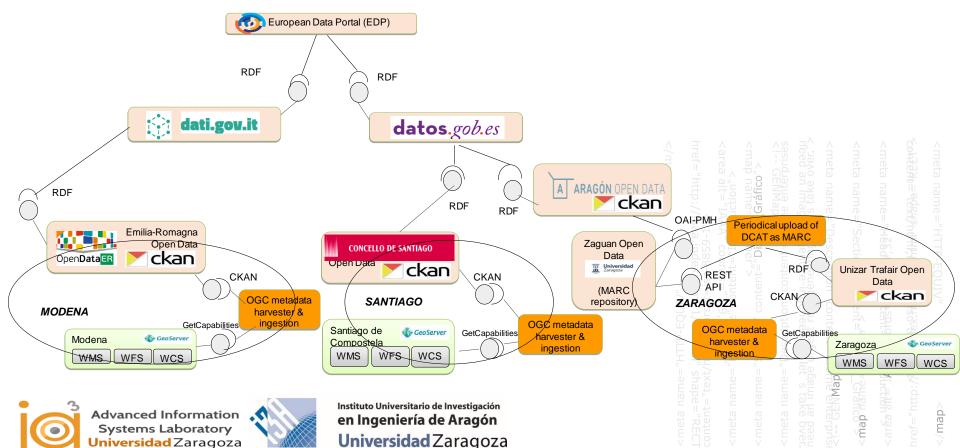
- TRAFAIR: Understanding traffic flows to improve air quality
 - European project co-financed by the Connecting Europe Facility of the European Union (2018 – 2020)
 - Goal: Design and develop the necessary infrastructure to estimate the pollution level on urban scale (6 European cities, different size)
 - Sub-goals:
 - Provide real-time monitoring of air pollution
 - Develop an air quality forecasting service based on the weather forecasts and the urban traffic flow
 - Publish monitoring and forecasting air quality and traffic data as open data
 - Develop applications for end-users and public administrations


Light adoption of GeoDCAT-AP

- Core properties with direct binding to ISO 19115
- Properties compatible with DCAT-AP, elements editable with CKAN software

Automate as much as possible the generation of metadata without human interaction

Metadata is harvested from OGC services through its GetCapabilities



Deployment of Open Data in Zaragoza, Santiago and Modena

- A solution based on Open Source software packages
 - GeoServer: management of spatial data
 - CKAN: platform for deploying Open Data portals

4. The challenge of quality

- Standardization efforts include test suites to assure
 - completeness (commission or omission of metadata elements)
 - consistency (compliance with metadata format and structure/domain of metadata elements)
- However, less attention is paid to accuracy ("accurate description of resources using factual and correct information")
 - Should a catalog maintain metadata records incorrectly classified (boundaries map classified as containing land use data)?
 - Should a resource locator link to an unreachable and defunct web site?
- Why not so accurate?
 - Geographic metadata has been a mandate for SDIs
 - , but not essential for final users that visualize/render these digital assets through online map clients, Open Street Map, Google Maps, ...

Some approaches to verify the quality of metadata

European Data Portal's Metadata Quality Assessment Methodology

Dimension	Indicator	
Findability	Keywords available (Dataset/keyword)	
	Category available (Dataset/theme)	
	Spatial information available (Dataset/spatial)	
	Temporal information available (Dataset/temporal)	
Accessibility	Most frequent AccessURL status code=200 (Distribution/accessURL)	
•	DownloadURL available (Distribution/downloadURL)	
	Most frequent DownloadURL status code=200 (Distribution/downloadURL)	
Interoperability	Format available (Distribution/format)	
	Media type available (Distribution/mediaType)	
	Format/ media type from vocabulary (Distribution/format or Distribution/mediaType)	
	Non-proprietary (Distribution/format or Distribution/mediaType)	
	Machine readable (Distribution/format or Distribution/mediaType)	
	DCAT-AP compliance (all entities and properties)	
Reusability	License available (Distribution/license)	
	License from vocabulary (Distribution/license)	
	Access rights available (Dataset/accessRights)	
	Access rights from vocabulary (Dataset/accessRights)	
	Contact point available (Dataset/contactPoint)	
	Publisher available (Dataset/publisher)	
Contextuality	Rights available (Distribution/rights)	
-	File size available (Distribution/byteSize)	
	Issued date available (Dataset/issued or Distribution/issued)	

Modified date available (Dataset/modified or Distribution/modified)

Some approaches to verify the quality of metadata

- Adaptation of ISO 19157 "Geographic Information Data Quality" to Open Data metadata
 - Accuracy and correctness of temporal, positional, and nonquantitative attribute information are covered

Quality category	Quality element	
DQ_Completeness	DQ_Completeness Commission	
	DQ_CompletenessOmission	
DQ_LogicalConsistency	DQ_ConceptualConsistency	
	DQ_DomainConsistency	
	DQ_FormatConsistency	
	DQ_TopologicalConsistency	
DQ_TemporalQuality	DQ_TemporalConsistency	
	DQ_TemporalValidity	
DQ_ThematicAccuracy	DQ_ThematicClassificationCorrectness	
	DQ_NonQuantitativeAttribute	
	Correctness	
DQ_1	PositionalCorrectness	
DQ	_QualityOfFreeText	
):	

datos.gob.es (2019) Sample based quality control Pass Fail DQ TheClasCorDatThet CR DQ TheNQADatRef CR Ε DQ_TheNQADatCon_CR DQ TheNQADisAcc CR DQ TheNQADisLic CR F DQ_QFTDatTitO_CR DQ QFTDatDesO CR

5. Conclusions

- Flexibility of Dublin Core to describe geospatial data
- Importance of having assisted processes for the automatic generation of metadata
- Importance of paying attention on the quality of metadata

References

- F.J. Zarazaga-Soria, J. Nogueras-Iso, M. Ford, 2003. Guidance material for mapping between Dublin Core and ISO in the Geographic Information domain. CWA 14856, CEN/ISSS Workshop— metadata for multimedia information—Dublin Core.
- J. Nogueras-Iso, F.J. Zarazaga-Soria, J. Lacasta, R. Béjar, P.R. Muro-Medrano,
 2004. Metadata Standard Interoperability: Application in the Geographic Information
 Domain. Computers, Environment and Urban Systems, 28: 611-634.
- D. Nebert, A. Whiteside, P. Vretanos (ed), 2007. OpenGIS Catalogue Services Specification, versión 2.02. Open Geospatial Consortium Inc.
- European Commission, 2016. GeoDCAT Application profile for data portals in Europe, GeoDCAT-AP v1.0.1, https://joinup.ec.europa.eu/release/geodcat-ap/101
- J. Nogueras-Iso, H. Ochoa-ortiz, M.A. Jañez, J.R.R. Viqueira, L. Po, R. Trillo-Lado, 2020. Automatic publication of Open Data from OGC services: the use case of TRAFAIR project. The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services, GEOProcessing 2020, Valencia (Spain), 21-25 November 2020.
- Publications Office of the European Union, 2020. Metadata Quality Assessment Methodology. How EDP measures the quality of Harvested Metadata.
 https://www.europeandataportal.eu/mqa/methodology
- J. Nogueras-Iso, J. Lacasta, M.A. Ureña-Cámara, F.J. Ariza-López, 2021. Quality of Metadata in Open Data Portals. *IEEE Access*, 9: 60364-60382.

</man>

| CE 291 p. 2., estados "VVVI., – He estados de content="Introduction" > "Headline" content="Section" content="Diseño_Gráfico" > "Section" content="Diseño_Gráfico" > "Section" content="Diseño_Gráfico" > "Section" content="Section" content="Diseño_Gráfico" > "Section" content="Section" content="Section content="Section content="Section content="Section content="Section content="Section content="Section con

a name="Description" con ant="Some enters some enters and mage "Some enters" stake eta name="HESdiff(6) Contento on mtroduction es

Grupo de Sistemas de Información Avanzados Universidad Zaragoza