

How to Create a National Crossdomain Ontology and Linked Data Infrastructure and Use It on the Semantic Web

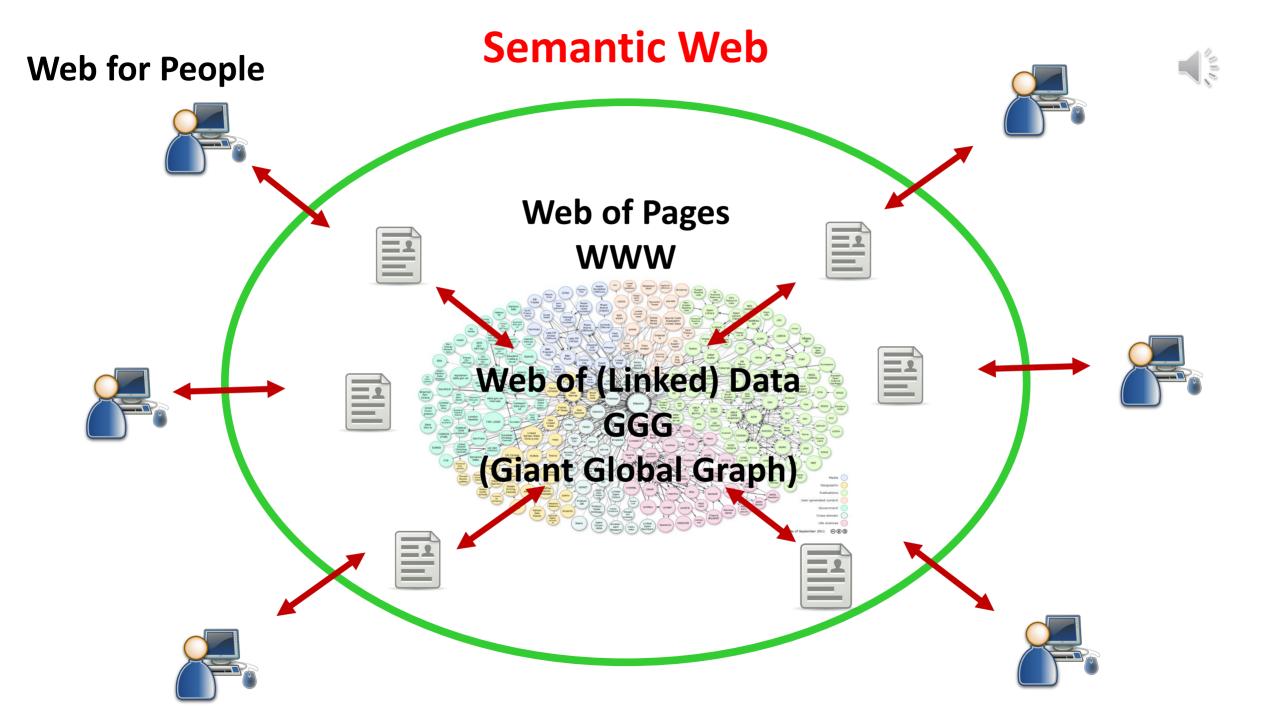
Eero Hyvönen

Aalto University, Dept. of Computer Science, professor University of Helsinki, Helsinki Centre for Digital Humanities (HELDIG), director

Semantic Computing Research Group (SeCo)

http://seco.cs.aalto.fi/u/eahyvone/

Contents


1. Semantic Web

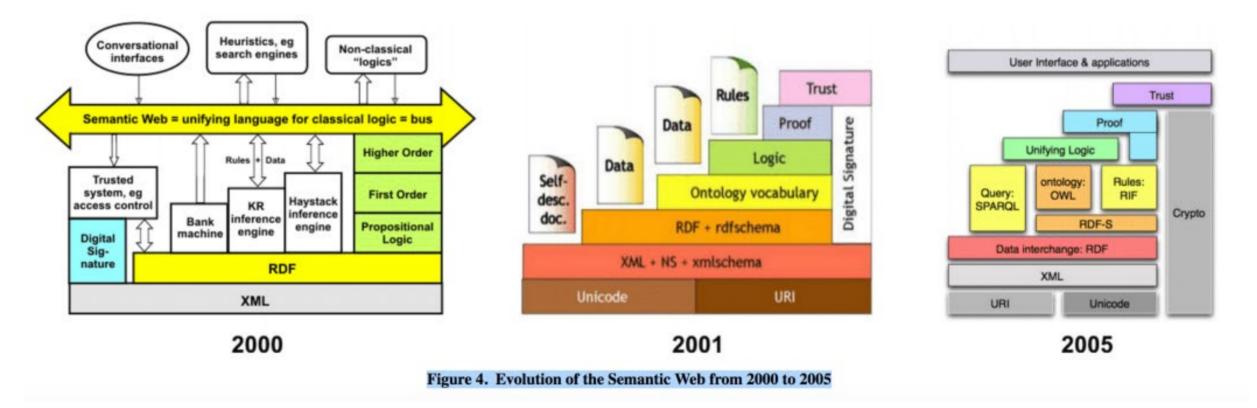
- Extending the Layer Cake Model
- 2. How to Build a National LOD Infrastructure?
 - Lessons learned in Finland
- 3. How to use SW Infra for Applications?
 - Sampo Model and series of systems
- 4. Paradigm Shifts in Web Publishing

1. SEMANTIC WEB

EXTENDING THE LAYER CAKE MODEL

Why Linked (Open) Data

- Enriching everybody's data collaboratively from separate silos
 - Everybody wins by collaboration!
- Creating Findable, Accessible, Interoperable, Re-usable data
 - The value of data increases!
- Creating more intelligent applications for the public, curators, and researchers
 - The machine "understands" linked data!



Evolving Layer Cake Model of W3C

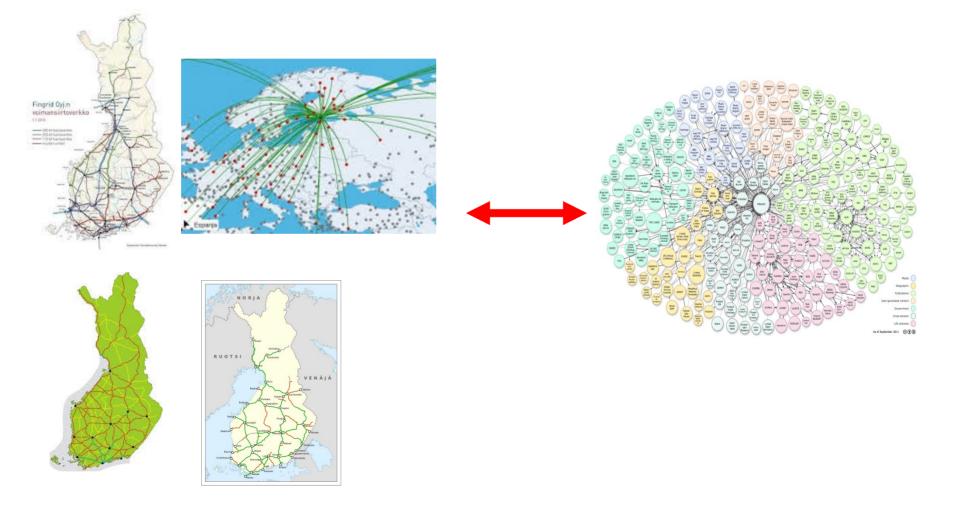
John Sowa: <u>http://www.jfsowa.com/ikl/</u>

Kingsley Uyi Idehen: https://medium.com/openlink-software-blog/semantic-web-layer-cake-tweak-explained-6ba5c6ac3fab

Key Challenges Addressed

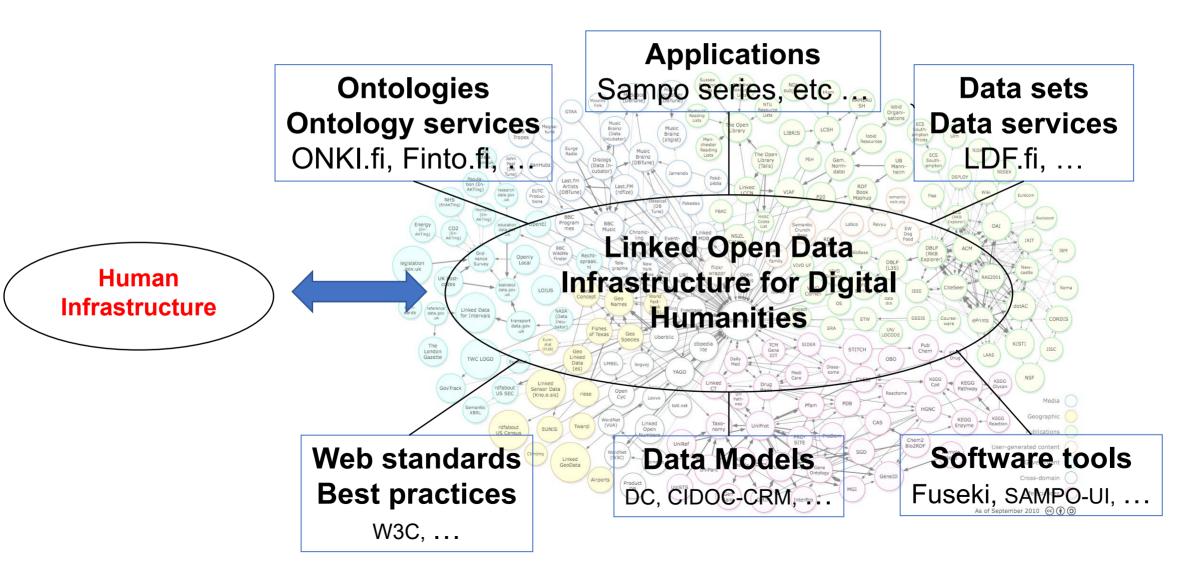
- Logic is a nice application domain agnostic model for
 - Knowledge representation and
 - Reasoning
- Domain-specific models are needed, too
 - Based on W3C SW standards
- National level models are needed using W3C SW standards
 - To support national languages, terminologies, data models, practices, ...

Result: Content Infrastructure



Traditional Infras:

(rail)roads, electricity, ...


Semantic Content Infra:

Ontologies, data, metadata, ...

Linked Open Data Finland: Elements of a National Infrastructure

2. HOW TO BUILD A NATIONAL LOD INFRASTRUCTURE?

Lessons learned in Finland

Starting Point Challenge 2002-2004

- Lessons learned when developing *MuseumFinland Finnish Museums on the Semantic web*:
 - Semantic Web is good for publishing heterogeneous distributed data
 - Ontologies were not available for SW applications
 - However, there were several thesauri in use
 - Lots of data had been indexed using them
- Developing large cross-domain thesauri is a challenge
 - Domain specific expert groups are needed

=> National FinnONTO Ontology Initiative in Finland 2003-2012

FinnONTO Solution Approach 2003-2012

- Paradigm change: thesauri -> ontologies
 - Shared ontologies harmonize, interlink, and enrich data automatically
- Linked ontologies: Align ontologies for cross-domain applications
- Support distributed domain-specific ontology development
 - By different expert groups
- Support re-use by centralized ontology services
 - APIs for legacy systems to use
- Create a sustainable infrastructure for maintaining ontologies
- Gradually move to URI-based data indexing on a national level

Why infrastructure?

"Intellectuals solve problems - geniuses prevent them"

Albert Einstein

Eero Hyvönen: **Preventing Interoperability Problems Instead of Solving Them**. Semantic Web Journal, vol. 1, no. 1-2, pp. 33-37, 2010.

Major Domain Ontology Types

- General concept ontologies
- Actor ontologies
- Place ontologies
- Time and period ontologies
- Event ontologies
- Domain nomenclatures and terminologies
 - E.g., medical terms
- Domain "ontology" refers thesaurus or gazetteer like KOSs whose resources are used is element values of metadata descriptions

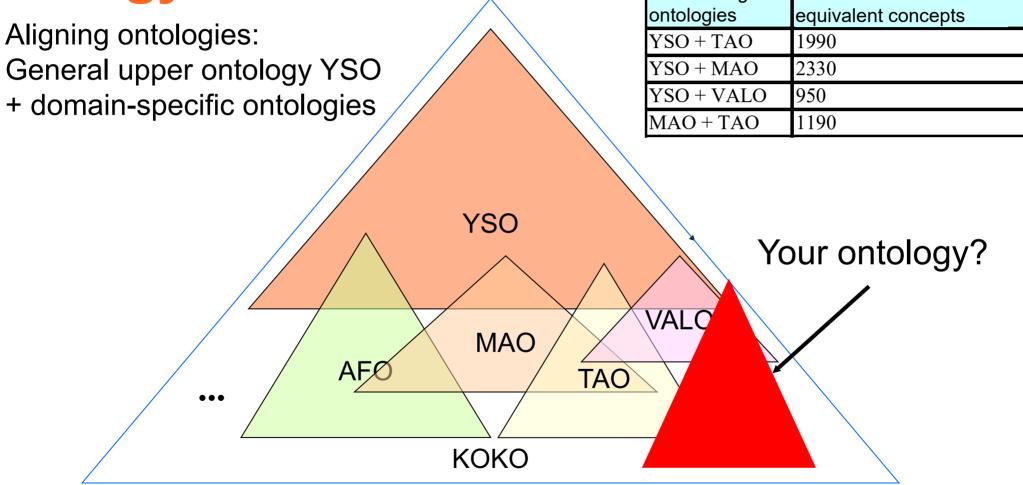
General Concept Ontologies

Traditional keyword thesauri

- General terms like "wagon", "city", "war", "chair", ...
- Correspond to classes of individuals
- (However, many keyword thesauri contain individuals, too)

Examples

- Art and Architecture Thesaurus (AAT) (culture)
- Library of Congress Subject Headings (LCSH) (library)
- UNSPSC (products and services)

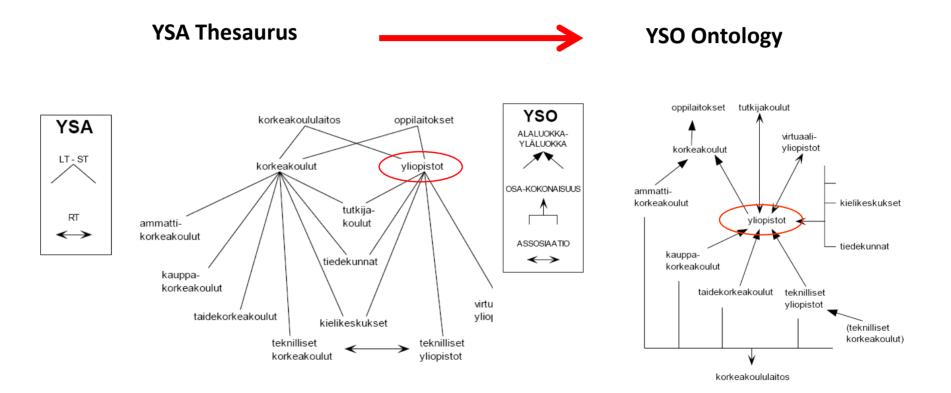

• ...

KOKO: From Thesauri to Ontologies - Linked Open Ontology Cloud

Name	Ontology domain	Underlying thesaurus	Size	Maintaining Organization	
1 YSO	General domain	General Finnish Thesaurus, YSA, Allärs	23700	National Library, Åbo Academy	
2 MUSO	Music	Thesaurus of Music, MUSA/CILLA	1000	National Library	
3 MAO	Museum domain	Thesaurus of Museum Domain, MASA	6800	National Board of Antiquities	
4 AFO	Agriculture, foresty	Agriforest Thesaurus	5500	Viikki Science Library	
TAO	Applied arts	Thesaurus of Applied Arts	2600	University of Eastern Finland and	
5				Library of Aalto University	
VALO	Photography	Thesaurus of Photography Literature,	1900	Finnish Museum of Photography	
6		Thesaurus of Photography Technology			
7 MERO	Seafaring, shipping	Thesaurus of Seafaring	1400	Finnish Transport Agency	
8 KAUNO	Literature subjects	Thesaurus of Literature, Bella	4900	Finnish Public Libraries, Kirjastot.fi	
9 JUHO	Public government	Thesaurus of Finnish Government, VNAS	6400	Ministry of Finance	
0 TERO	Health promotion	YSA, TESA, MeSH, Stameta	22000	Various organizations	
1 KITO	Literature research	Thesaurus of Literature Research	900	Finnish Literature Society	
2 KULO	Culture research	Thesaurus for Folk Culture Studies	1600	Finnish Literature Society	
13 KTO	Linguistics	Thesaurus of Linguistics	1000	Research Institute for the Languages in	
14 PUHO	Defense	Thesaurus of Defence Administration	2000	Finnish Defence Forces	
5 POIO	Points of interest	TGN, Geonames, LDG, SUO	4600	Various organizations	
TOTAL			86300		

Case: Holistic Collaborative Finnish Ontology KOKO

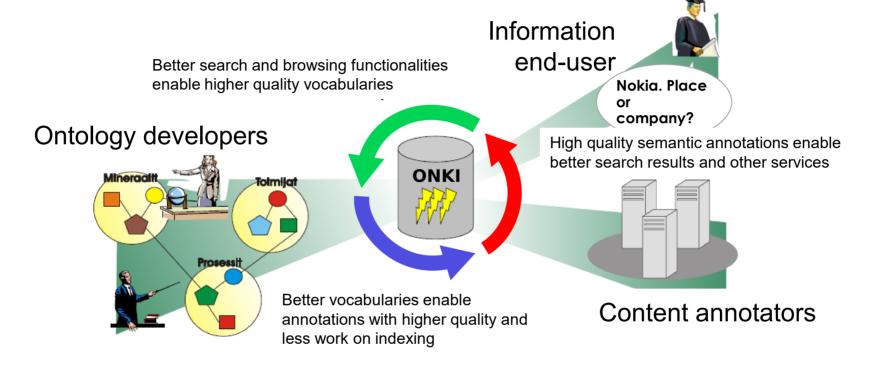
[Hyvönen et al., ESWC 2009]


KOKO from the "end-user" viewpoint 0 O A **KOKO** ontology

KOKO

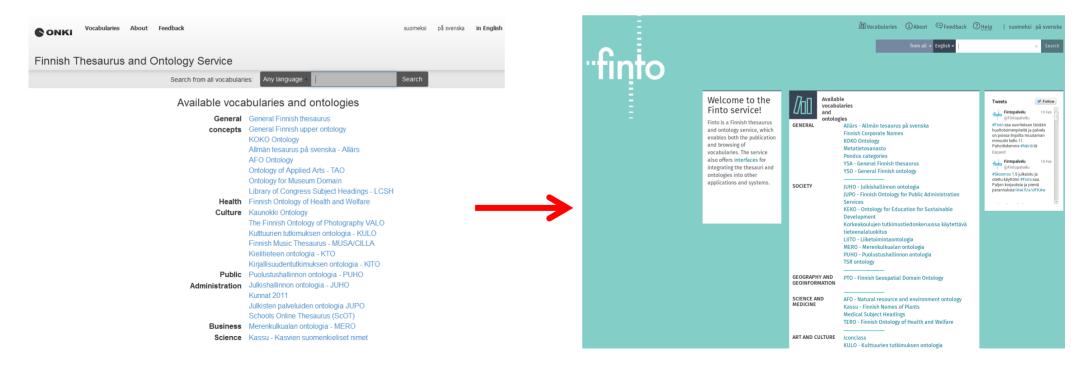
Thesaurus -> Ontology Transformation Method

- Transformation into light-weight ontologies based on RDF Schema
 - SKOS was developed only later on
- First transform thesaurus into a subClassOf ontology and then edit it manually using Protégé :
- 1. Disambiguate vague terms and re-position new split concepts
 - E.g., "child" as age group =/= "child" as a family relation
- 2. Disambiguate BT relations into subClassOf and partOf
- 3. Complement fragmentary BT clusters into full subClassOf hierarchies


Example: University Terminology YSA Thesaurus -> YSO Ontology

Semantic relations in use: BT/NT and RT Semantic relations in use: subClassOf, partOf, and relatedConcept

Ontology library services: ONKI.fi concept


Supporters of the national semantic web infrastructure Companies, government, EU, ...

KOKO ontologies and ONKI service deployed January 2014 by the National Library as <u>Finto</u>

Permanent free national service funded my Finnish ministries

2019: 32 million API calls 2020: 2,1 million page visits 2020: 12% increase in use

) - General Finnish or	ntology		Content language Englis	h +	× Search	
Hierarchy Groups	New	objects > physical objects > orga	anic objects			
ts and action cts		PREFERRED TERM organic objects 🗳				
abstract objects physical objects -inanimate objects -matter		ТҮРЕ	Hierarchical concept			
		BROADER CONCEPT	physical objects			
anic objects		NARROWER CONCEPTS	abscesses			
(ons			axons			
ody apsid			body			
arcases			capsid carcases			
ell nucleus ell walls			cell nucleus			
ells			cells			
ellular automata hloroplasts			cellular automata			
hromosomes lones			cell walls chloroplasts			
alls (botany)			chromosomes			
enes ialformations			clones			
tembranes			galls (botany)			
nicrosatellites nitochondria			genes malformations			
rganelles			membranes			
rganisms arts of plants			microsatellites			
arts of the body igment			mitochondria			
olyps			organelles organisms			
eceptors cars			parts of plants			
hell and peel			parts of the body			
ynapses elomeres			pigment			
ssues (organic objects)			polyps receptors			
sical whole .e			scars			
ems			shell and peel			
erties			synapses			
			telomeres tissues (organic objects)			
		IN OTHER LANGUAGES	orgaaniset objektit	Finnish		
			orgaaninen rakenne			
			organiska objekt	Swedish		
			organisk struktur			
		URI Devenlend this concents	http://www.yso.fi/onto/yso/p174 🧣			
		Download this concept:	RDF/XML TURTLE JSON-LD		Last modified 11/14/19	
		EXACTLY MATCHING	organic objects	KOKO Ontology		
		CONCEPTS	Same estates			

ONKI Widget for Mashups

- Ontology services are automatically available after publishing a vocabulary or ontology with ONKI
- Simple AJAX-based widget for creating mash-ups

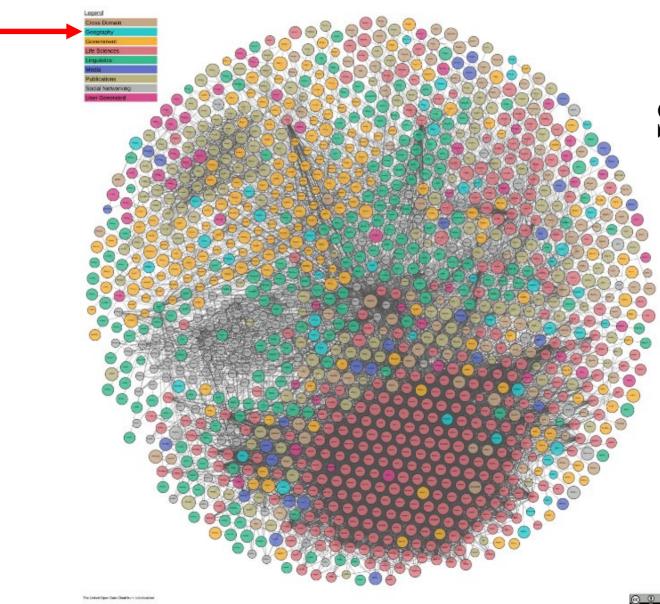
1. ONKI Concept Search Widget in default state						
ontology selector	search field	language selector	open ONKI Browser			
yso view ysa paikka toimo mao ic hpmuls mesh genre audience medium yso-old ks-poikka ks-toiminta (all)	5	Copen ONK	I Ontology Browser			

How to Deal with Overlapping Concepts in KOKO Ontology Cloud?

- YSO concepts are widely used in the domain ontologies
 - Up to 60% in some cases
 - YSO is good for a general upper ontology
- Domain ontologies also share concepts with each other
 - Much less than with YSO but up to 40% in some cases
- Lesson learned
 - Lots of redundant thesaurus work has been done in the intersecting areas
 - Collaborative re-organization of ontology work is needed, but is difficult
 - There is clearly need for merging some ontologies
 - How to deal with intersecting concepts?
 - How to manage distributed work of domain specific expert groups?
 - How propagate changes through the Linked Ontology Cloud?
 - Stakeholders work on these challenges in the Finto network / National Library

[Frosterus et al., IJMSO, 2016]

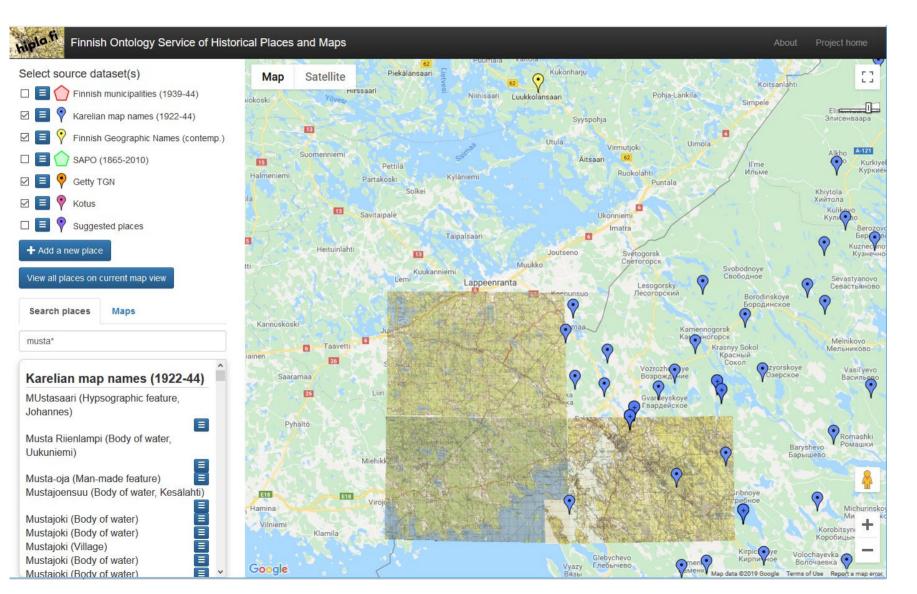
Actor Ontologies: Resolving Identities


URI: http://dbpedia.org/resource/Pyotr_Ilyich_Tchaikovsky

Pjotr Tšaikovski (fi) Пётр Ильи́ч Чайко́вский (ru) Pyotr Ilyich Tchaikovsky (en) Pjotr Tjajkovskij (sv) Pjotr Tsjajkovskij (no) Pjotr Iljitsch Tschaikowski (de) Piotr Ilitch Tchaïkovski (fr) Piotr Ilich Chaikovski (es) Pëtr Il'ič Čajkovskij (it) Pjotr Iljitsj Tsjaikovski (nl) Piotr Ilitch Tchaikovsky (pt) Piotr Ilitch Tchaikovski (nl) Piotr Ilitch Tchaikovski (nl) Piotr Ilitch Tchaikovski (nl) Piotr Ilitch Tchaikovski (nl) Piotr Ilitch Tchaikovski (nl)

Geography: A Key Element in the Linked Open Data Cloud

https://lod-cloud.net/

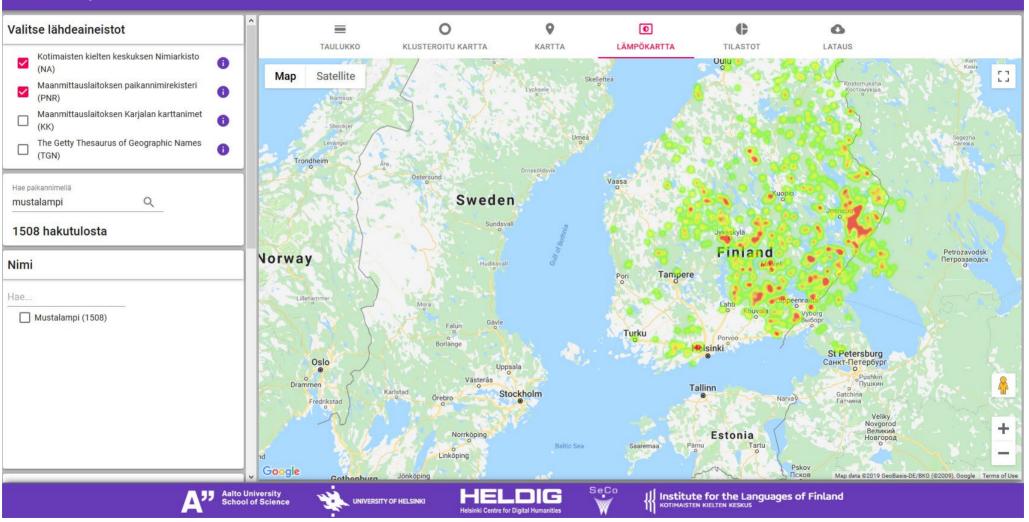

Semantic Web

LODstats.aksw.org:

10 000 datasets 150 000 000 000 triples

Finnish Ontology Service of Historical Places and Maps: http://hipla.fi

V I V



NameSampo: <u>http://nimisampo.fi</u>

TIETOJA

Nimisampo

There are 1508 places with name "Mustalampi" (= black small lake) in Finland!

Time Ontologies

- Modeling linear and cyclic time
- Time periods are different in different countries
 - E.g., Bronze Age in Egypt and Nordic Countries
- Modeling uncertainty in time

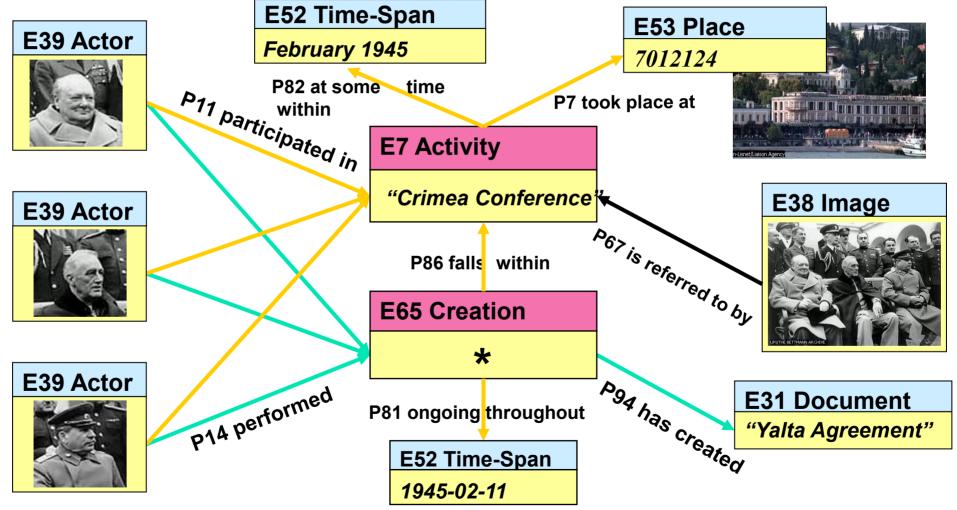
Event Ontologies

Events are "semantic glue" that link together:

- Places where events occur
- Times when events occur
- Actors who participate in events in roles
- Other related events

Shared Metadata Schemas

Two Main Approaches


Dublin Core approach

- Mapping/refining schemas using subproperties
- "Dumb down principle" is used
- <u>https://dublincore.org/</u>
- Using foundational ontology models
- Different schemas are mapped onto a shared ontology
- CIDOC CRM is a prominent standard of this
 - <u>http://www.cidoc-crm.org/</u>

CIDOC CRM:

Using events as the foundation for knowledge representation

[Slide by: Stephen Stead]

Lessons Learned: Ontologies

Ontology development

- "Little semantics goes a long way" (Jim Hendler)
- Little can mean a lot of work in big ontologies
- Just transforming thesauri into SKOS format is useful

Distributed domain-specific ontology development

• Needed but creates new linking challenges

Centralized national ontology services

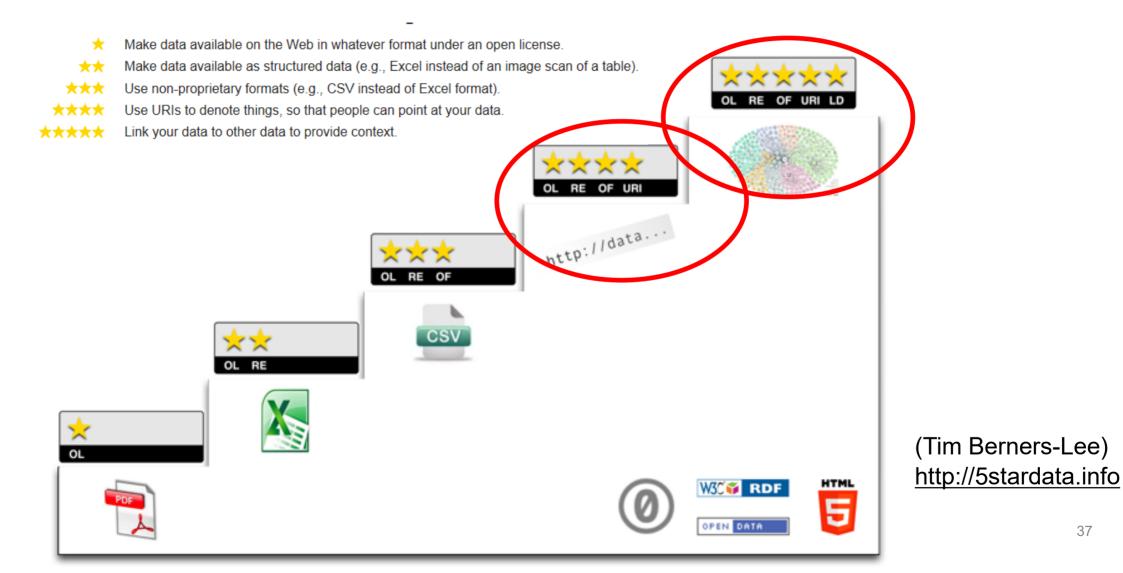
• Very useful in a country like Finland

Focus on sustainability processes

• This is never ending work

Project management & funding

- Make baby steps: demonstrate use case after each step
- Create large collaboration networks including companies, too



Linked Data Service Infrastructure

Linked Data Finland 2012-

How to publish Linked Data? 5-star Linked Data model

https://www.dnb.de/EN/Professionell/Metadatendienste/Datenbezug/LDS/lds_node.html

An example of a Linked **Data Service**

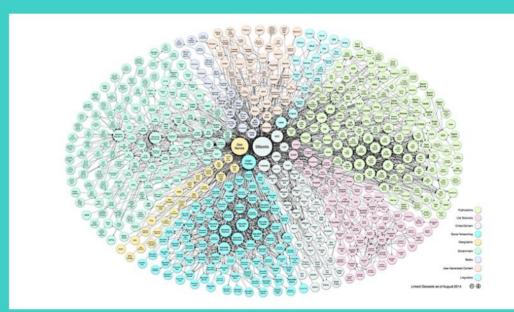
MENU

CORONA MEASURES

DNB FOR USERS

Deutsch

DNB PROFESSIONAL


🖉 Sign language

🖇 Simple language

Home > DNB Professional > Metadata Services > Linked Data Service

LINKED DATA SERVICE

- Overview
- Integrated Authority File (GND)
- Bibliographic data
- Test data
- Subscription Terms and Terms of Use
- Further development and service information
- Frequently asked questions (FAQ)
- Documentation
- Download
- Contact

Case: Linked Data Finland "7-star" model and LDF.fi data hotel

Goals: enhance re-usability and data quality

7-star Linked Data Service

However, in our opinion, providing 5-star Linked Data is just the beginning. To actually make use of the datasets, consumers need more support in getting to know and access them, as well as a better grasp of their quality and provenance. To this end, we extend the model with two additional stars:

***** Provide your data with a schema and documentation so that people can *understand and re-use* your data easily.

****** Validate your data and denote its provenance so that people can trust the quality of your data.

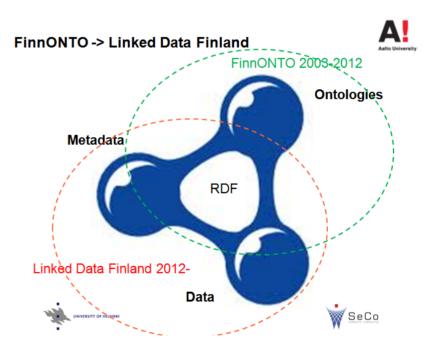
This added support should come with as little extra work as possible to the data publisher. Our hypothesis is that a lot of this can be done automatically, basing on the Linked Data core. A data publisher needs only to provide their data in the RDF format, and the LDF.fi portal will do the rest automatically. See the <u>overview paper</u> (in ESWC 2014 Proceedings, Springer-Verlag) for some more details about the underlying ideas.

Burj Al Arab

Living Laboratory for publishing Linked Open Data

- Same idea as in **ontology services**
- But for **data** and **schemas**

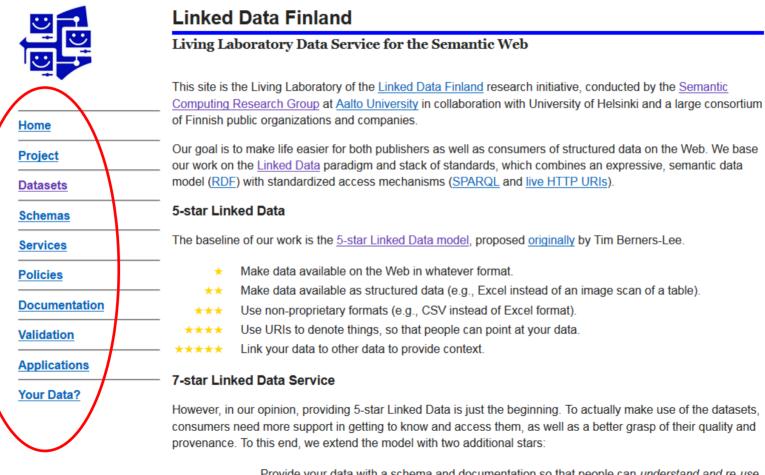
Data Services for


- Linked datasets
- Schemas

Links to

- Related services
- Related applications

Learning Center


• For publishing and using Linked Data

Why LDF.fi?

Linked Data Finland Living Lab http://ldf.fi

Our goal is to make life easier for both publishers as well as consumers of structured data on the Web. We base our work on the Linked Data paradigm and stack of standards, which combines an expressive, semantic data

However, in our opinion, providing 5-star Linked Data is just the beginning. To actually make use of the datasets, consumers need more support in getting to know and access them, as well as a better grasp of their guality and

- Provide your data with a schema and documentation so that people can understand and re-use your data easily.
- Validate your data and denote its provenance so that people can trust the quality of your data. ******

This added support should come with as little extra work as possible to the data publisher. Our hypothesis is that a lot of this can be done automatically, basing on the Linked Data core. A data publisher needs only to provide

← → C 🔒 Idf.fi/dataset/warsa III Apps G Google M Gmail 🙀 Mission - Semantic... ◘ YouTube 💡 Maps 峰 Translate Viimeisimmät luke... 🛆 My Drive - Google... 💰 Your Projects - Ove...

Example dataset: WarSampo Linked Data & SPARQL endpoint

https://www.ldf.fi/dataset/warsa

Sotasampo Linked Data Finland

WarSampo

Home Project Datasets Search Data Schemas Services Policies Documentation Validation Linked Data Science Applications Your Data? Linked Data School

WarSampo Knowledge Graph includes harmonized data of different kinds concerning the Second World War in Finland, separated in different subgraphs representing events, actors, places, photographs, and other aspects and documentation of the war. The data covers the Winter War 1939-1940 against the Soviet attack, the Continuation War 1941-1944 where the occupied areas of the Winter War were temporarily regained, and the Lapland War 1944-1945, where the Finns pushed the German troops away from Lapland.

To test and demonstrate its usefulness, this Knowledge Graph is in use in the semantic portal <u>WarSampo</u>, explained in more detail in the <u>project page</u>.

The Knowledge Graph is published on Zenodo with a version history

Example SPARQL queries for the data:

- Events, photographs and articles that are situated in Vyborg
- Casualties of the 1st Division and its subunits in the time interval 13.2.-13.3.1940 by place and date

Data Download

The data can be downloaded at https://zenodo.org/record/3431122/files/warsampo.zip

License

Licensor: Kansallisarkisto, Semanttisen laskennan tutkimusryhmä (SeCo)

See possible graph-specific licenses below.

Detailed Dataset Contents

Karelian map names 1922-44 (URI: http://ldf.fi/warsa/places/karelian_places)

(Browse data / View in Sotasampo.fi)

This graph contains Finnish map names from the Karelian region (currently divided between Russia and Finland). The source data was a CSV table with roughly 40 000 map names, which were picked from Karelian maps (dated 1922-1944) by Jyrki Tiittanen (National Land Survey of Finland). The CSV table provided a label,

[Koho et al., SWJ, 2021]

Software Tools for the Semantic Web

Component Technologies and Tools for the Semantic Web

Languages & standards of W3C and others

- Data exchange language: RDF
- Vocabulary/schema languages: SKOS, OWL
- Data/ontology query language: SPARQL
- Rules for reasoning: RIF, SWRL, ...
- Metadata and ontology models DC, CIDOC CRM, ...

Triple stores for data services

- Fuseki, Sesame, Redland, Virtuoso, ...
- <u>http://en.wikipedia.org/wiki/Triplestore</u>

Development tools

- Ontology editors
 - Protégé <u>https://protege.stanford.edu/</u>
 - TopBraid Composer <u>https://www.topquadrant.com/topbraid-composer-install/</u>
- Software development tools
 - Java: Apache Jena <u>https://jena.apache.org/</u>
 - Python: RDFLib <u>https://pypi.org/project/rdflib/</u>

Lessons Learned: Data Services

- LDF.fi platforms makes data publishing very easy
 - Services are generated automatically from Service Description metadata
- Reusing services and support functions is cost-efficient
 - Unnecessary re-implementions can be avoided
- LDF.if is important for Human Infrastructure building
 - In hackathons
 - In educational university courses
- Basic services can be run with little maintenance
 - However, technical expertise is needed
- Sustainability is needed
 - Part of national research infrastructure roadmap of the Academy of Finland
 - Servers provided "for free" for universities by CSC / Ministry of Education and Culture
- Data maintenance issues remain a challenge
 - How to keep the data & services up-to-date

3. HOW TO USE SW INFRA FOR APPLICATIONS?

Sampo Model and Sampo Series of Systems

Video "The Semantic Web and AI for Digital Humanities": <u>https://vimeo.com/470313703</u>

video

Applications: Cultural Heritage "Sampos" on the Semantic Web 2004-

- 1. MuseumFinland Finnish Museums on the Semantic Web (2004) [39 000 users]
- 2. CultureSampo Finnish Culture on the Semantic Web (2008) [107 000 users]
- 3. TravelSampo Mobile Contextualized Services of Cultural Tourism (2011)
- 4. BookSampo Finnish Fiction Literature on the Semantic Web (2011) [2 million users in 2020]
- 5. WW1LOD World War I Linked Open Data (2014)
- 6. WarSampo Finnish World War 2 on the Semantic Web (2015-19) [742 000 users]
- 7. Norssi Alumni on the Semantic Web Historical person registry using LOD (2017)
- 8. U.S. Congress Prosopographer U.S. Congress Legislators 1789-2018
- 9. BiographySampo Finnish Biographies on the Semantic Web (2018-20) [50 000 users]
- 10. NameSampo Linked Data Workbench for Toponomastic Research (2019) [37 000 users]
- 11. WarVictimSampo 1914-1922 National War History [29 000 ussers]
- 12. Mapping Manuscript Migrations (MMM) medieval and Renaissance manuscripts (2020)
- 13. AcademySampo Finnish Academic People 1640 1899 (2021)
- **14.** FindSampo Archaeological Finds on the Semantic Web (2021)
- 15. LetterSampo, LawSampo, ParliamentSampo, ... underway

https://seco.cs.aalto.fi/applications/sampo/

Defense of Sampo, Ateneum, A. Gallen-Kallela, 1896

Sampo = Mythical artifact of the Finnish Epic Kalevala that gives to its owner riches and good fortune. *A metaphor of amazing technology.*

Defense of Sampo, National Gallery, Ateneum, A. Gallen-Kallela, 1896

Sampo Model Principles

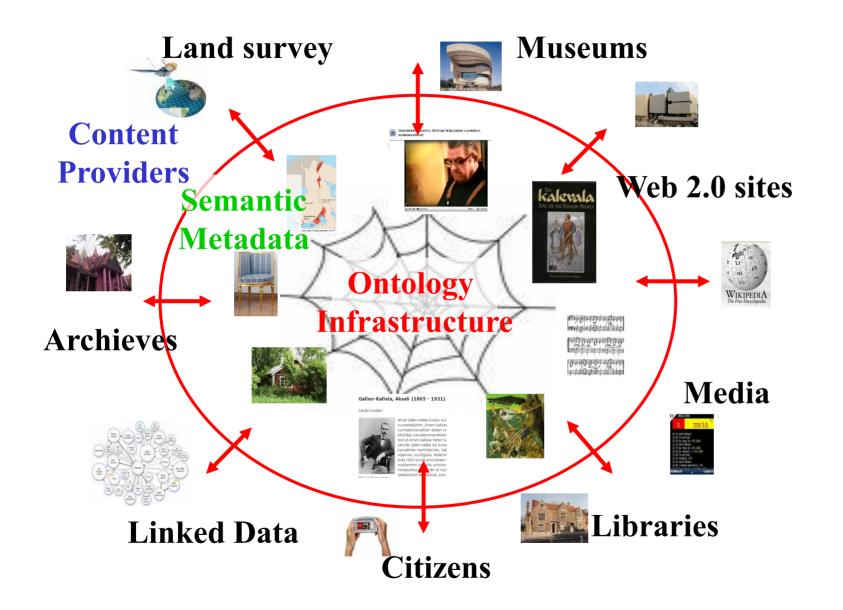
 Table 1. Sampo Model Principles P1–P6

P1. Support collaborative data creation and publishing

P2. Use a shared open ontology infrastructure

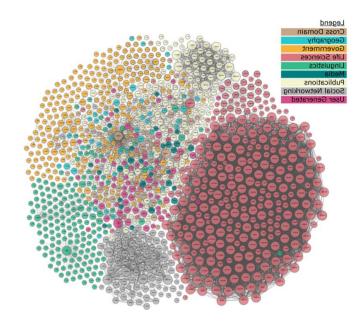
P3. Support data analysis and knowledge discovery in addition to data exploration

P4. Provide multiple perspectives to the same data


P5. Standardize portal usage by a simple filter-analyze two-step cycle

P6. Make clear distinction between the LOD service and the user interface (UI)

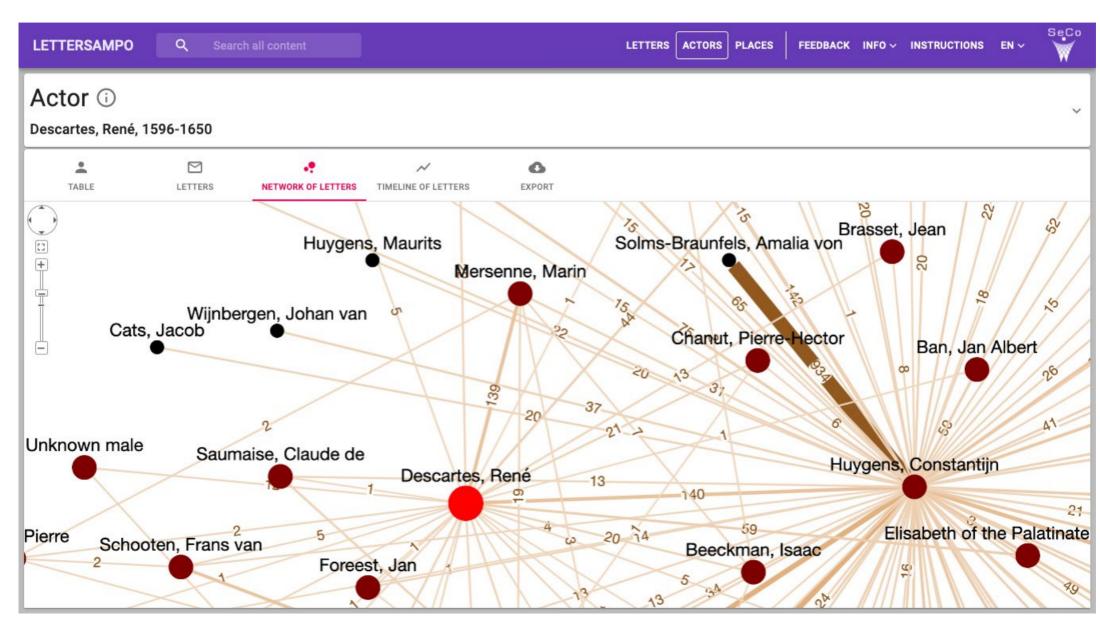
P1. Support collaborative data creation and publishing


P2. Use a shared open ontology infrastructure

Elements of National Ontology Infrastructure for Digital Humanities

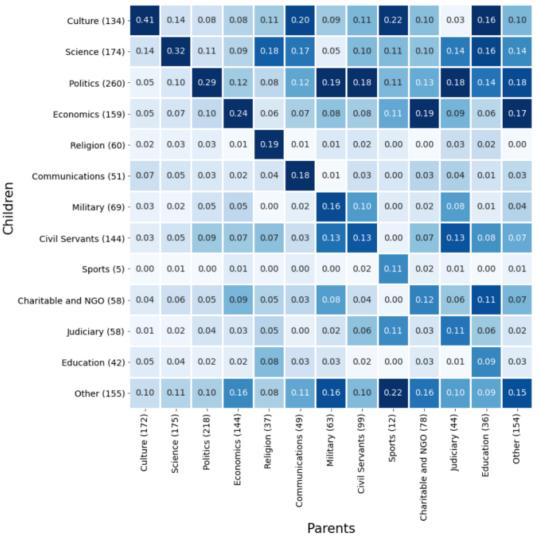
Domain ontologies

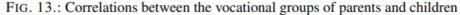
- Historical Places and Maps
- Historical Persons
- Historical Times
- Historical Events
- Historical Keyword Concepts
- .
- Shared metadata models
 - Dublin Core, CIDOC CRM, ...
- Ontology and linked data services online



P3. Support data analysis and knowledge discovery in addition to data exploration

LetterSampo: Network analyses of Early Modern Correspondences: Case Rene Descartes


V II V



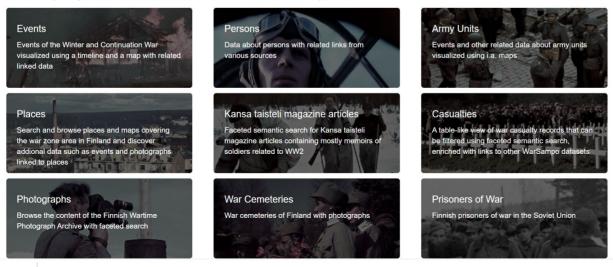
BiographySampo: Correlations of Vocational Groups between Parents and Children using Google Colab

M. Tamper et al. / Analyzing Biography Collections Historiographically as Linked Data: Case National Biography of Finland

P4. Provide multiple perspectives to the same data

000

WarSampo – Finnish World War II on the Semantic Web: Nine perspectives to war history



The WarSampo Portal enables both historians and laymen to study the war history and destinies of their family members in the war from different interlinked perspectives (instructions)

Join the WarSampo Facebook group

Select a perspective to search and browse the WarSampo data

P5. Standardize portal usage by a simple filter-analyze two-step cycle

000

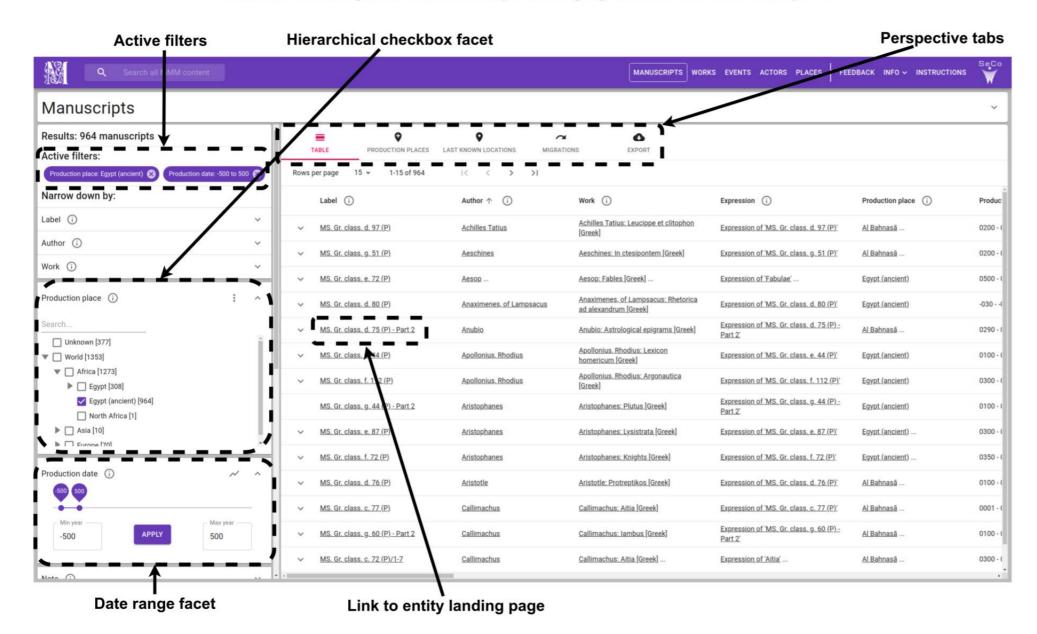
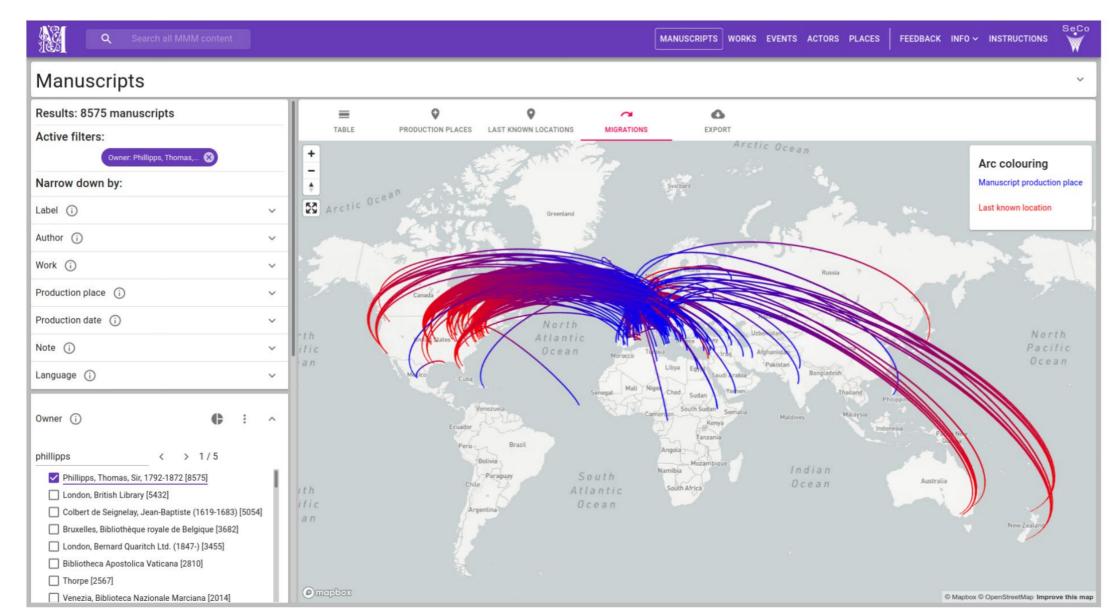
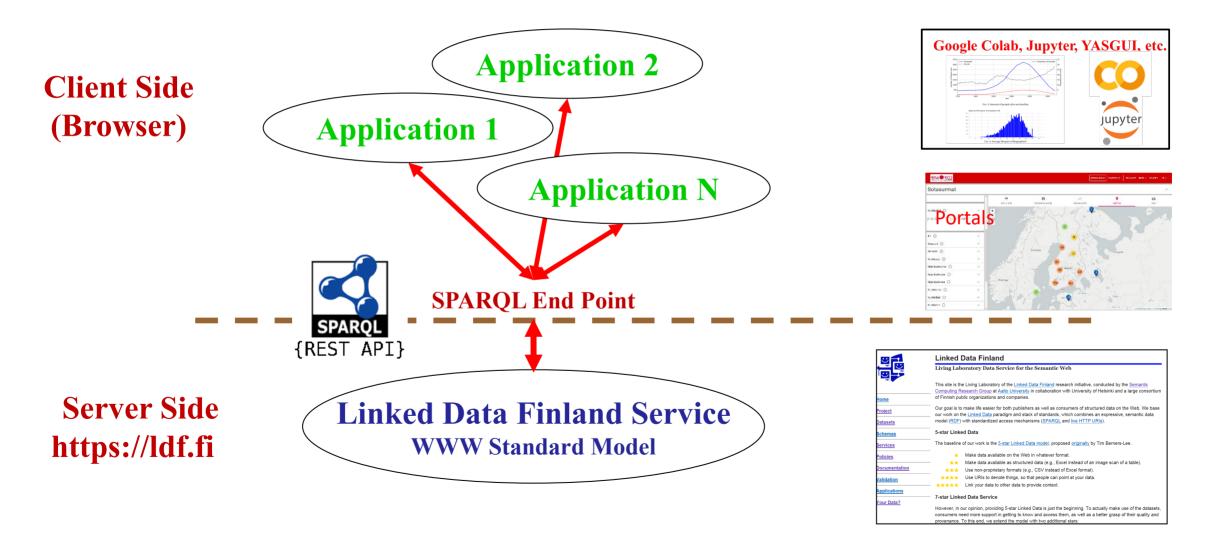



Figure 6. A selection of SAMPO-UI components for building a faceted search perspective of a semantic portal.

9


Mapping Manuscripts Migrations: Case Thomas Phillips (1792-1872)

P6. Make clear distinction between the LOD service and the user interface (UI)

Linked Data Publishing Model

An Example of A Sampo Portal and Data Service

LetterSampo – Historical Letters on the Semantic Web (2021)

Example Video of a Sampo System: <u>https://vimeo.com/461293952</u>

"Sampo Series" Demonstrates a Paradigm Shift: 4 Generations of Publishing Data for Humanities

1 Printed Texts

- 2. Online Systems for Searching and Exploring
- 3. Publishing Content as Linked Data with Tools for DH
- 4. Automatic Knowledge Discovery and Artificial Intelligence

Eero Hyvönen: <u>Using the Semantic Web in Digital Humanities:</u> Shift from Data Publishing to Data-analysis and Serendipitous Knowledge Discovery Semantic Web, vol. 11, no. 1, pp. 187-193, 2020.

Lessons Learned: Sampo Applications

- Domain agnostic SW standards and practices can be applied on "all" domains
- National SW infrastructure is the key for cost-efficient application development

- It is possible to create popular systems in use with novel features
- Reusable software tools such as Sampo-UI quite essential
- Sustainability of applications remains a challenge
 - Technologies are new to data owners
- Paradigm change in web publishing
 - new avenues to the future are open ...

SUMMARY

Re-usable, shared LOD infrastructure is the key for successful Semantic Web Applications

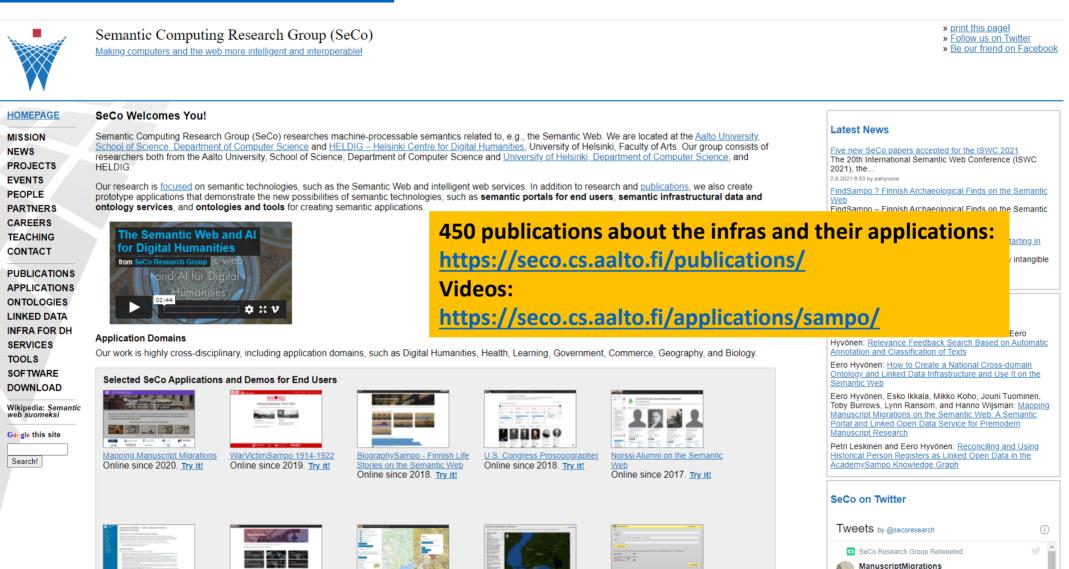
But the Lunch is not Free

- More collaboration is needed -> complicates work
- Integration of semantic systems with legacy systems
- Manual annotations are costly and may not scale up
- Automatic annotation and linking lowers data quality

Need more source criticism and data literacy!

- What the data actually is and mean?
- Big data quality issues: completeness, skewness, errors

More Information – Questions? https://seco.cs.aalto.fi/


Semantic Finlex - Finnish Law

WarSampo - Second World War Hipla.fi - Finnish Ontology

@MSMigrations

"Harmonizing and publishing heterogeneous

Semantic National Biography

BirdWatch - Mobile Semantic